COURSE OUTLINE

1. GENERAL					
INSTITUTION	University of Thessaly				
SCHOOL	School of Technology				
DEPARTMENT	Dept. of Forestry, Wood Sciences and Design				
LEVEL	Undergraduate				
CODE	ΞΣY841 STUDENT SEMESTER 8 th				
COURSE TITLE	Chemical Technology of Wood				
ACTIVITIES			WEEKLY HRS	5	ECTS
Lectures		3		5	
	•				
TYPE OF COURSE	Compulsory (orientation: <i>Wood sciences & design</i>)				
PREREQUISITES:	None				
LANGUAGE TEACHING AND EXAMINATION:	Greek				
THE COURSE OFFERED TO STUDENTS ERASMUS	Yes				
WEBPAGES COURSE (URL)	http://mantanis.users.uth.gr/Chemical-technology-of-				
	wood.pdf				

2. LEARNING OUTCOMES

Learning Outcomes

The aim of the course is the students, who are in the direction of *Wood sciences & design*, to emphasize more and learn topics related to the wood chemical technology, that is, to get educated respecting the chemical composition and structure of wood and its chemical properties.

Additional scope is to get acquainted with some important chemical technologies such as chemical and thermal modification, resin modification, pulping, adhesion, pelletisation, etc., which are applied in processes to yield valuable end products from wood via chemical or thermochemical or mechanochemical means.

General Skills

Upon successful completion of this course, the students will be able to develop and cultivate basic professional and social skills:

- Search, analysis and synthesis of data and information
- Autonomous work
- Respect for the natural environment
- Exercise criticism and self-criticism
- Promoting free, creative and inductive thinking
- Understanding highly technological developments and their implications

3. COURSE CONTENT

The course focuses on issues related to:

- Chemical composition and structure of wood as a lignocellulosic material
- Isolation of wood polymeric components
- Extraction of wood laboratory processes
- Importance of chemical characteristics of wood to end uses & material properties
- Acidity of wood and its consequences to specific processes

- Modification of wood (chemical, thermal, impregnation) and products thereof
- Hydrothermal modification of wood
- Wood adhesion and adhesives
- Pelletisation production of wood pellets and qualities / end-product properties
- Natural products from wood extractives & uses
- Pulping of wood & derived products (pulp, paper, cardboards)

During the course, in addition to lectures:

- Case studies are used which are the subject of discussion during the lectures
- Search in the internet: Students are assigned to look up for specific modern technologies

Course lectures are supported by **videos** shown to the students regarding several industrial chemical processes. Demonstration of wood samples of end (chemical) products in the classroom.

	HODS EVALUATION			
DELIVERY METHOD	Face to face			
	The course is organized in one main stream:			
	Lectures, which analyze the concepts and methodologies			
	that form the core of the course materials.			
USE OF INFORMATION AND	Use of course websites both on UTH and also on the e-Class			
COMMUNICATION TECHNOLOGIES	platform for posting (a) notes, (b) internet links, (c)			
	announcements, search tools and other materials			
MANAGEMENT OF TEACHING	Activity	Semester Workload		
	Lectures	40		
	Individual homework 30			
	Laboratory workshops			
	Individual and work	55		
	study for term			
	assignment			
	Term assignment			
	presentation			
	Course Total	125		
STUDENT EVALUATION				
	Student assessment is largely based on the group work done			
	by students, while the final grade takes into account:			
	 the written final examination 			
	• the outcomes of the assigned homework			
	participation in course activities			

4. TEACHING AND LEARNING METHODS - EVALUATION

5. RECOMMENDED BIBLIOGRAPHY

- Navi, P., & Sandberg, D. (2012). Thermo-hydro-mechanical processing of wood. Lausanne: EPFL Press. Link- <u>https://www.diva-portal.org/smash/get/diva2:997954/FULLTEXT01.pdf</u>
- Pizzi A, Mittal K.L., 2010. Wood Adhesives, Koninklijke Brill NV, Leiden.
- Forest Products Laboratory. 2010. Wood handbook Wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, <u>https://www.fpl.fs.usda.gov/documnts/fplgtr/fpl_gtr190.pdf</u>

- Fengel, D., Wegener, G. 1984. Wood. Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin, New York.
- Γρηγορίου Α., 2008. Χημεία Και Χημικά Προϊόντα του Ξύλου, Εργαστηριακές Σημειώσεις. ΑΠΘ, <u>https://users.auth.gr/agrigori/Chemistry%20and%20Chemical%20Technology%20of%20Wood.p</u> <u>df</u>
- Lykidis et al. (2008) Hydrothermal recycling of waste particleboards, <u>https://www.sciencedirect.com/science/article/abs/pii/S0956053X06003497</u>
- Φιλίππου Ι., 2014. Χημεία Και Χημική Τεχνολογία Ξύλου. Εκδόσεις Γιαχούδη. Θεσσαλονίκη.
- Mantanis G. (2017) Chemical modification of wood <u>http://mantanis.users.uth.gr/R2017-02.pdf</u>
- Sandberg, D. et al. (2017) Wood modification: <u>https://iforest.sisef.org/pdf/?id=ifor2380-010</u>
- Mantanis et al. (2008-2021), <u>http://mantanis.users.uth.gr/recent-work.pdf</u>
- Adamopoulos et al. (2017) Review: <u>Development of sustainable bio-adhesives for engineered</u>
 <u>wood panels–A Review</u>
- Mantanis G. (2018) Review on WBP adhesives: <u>http://mantanis.users.uth.gr/R2018-01.pdf</u>
- Papadopoulos A. (2019) Review on nanomaterials: <u>https://www.mdpi.com/2079-4991/9/4/607</u>
- Mantanis et al. (2019) Fire retardants for MDF, <u>http://mantanis.users.uth.gr/R2019-01.pdf</u>
- Lin et al. (2020) High leach-resistant FRs for wood, <u>http://mantanis.users.uth.gr/R2021-04.pdf</u>